Formalizing atomic rules in textual entailments

A. Przepiórkowski, J. Kozakoszczak, T. Teleżyński, J. Winkowski \& D. Ziembicki

Institute of Computer Science, Polish Academy of Science
University of Warsaw

I: Former President Bill Clinton is a supporter of "social capitalism".
O : President Bill Clinton is a supporter of "social capitalism".

X.L	X.L
$\|$compound \mid compound	
Y.L	Y.L
$\|$amod	
Z.G	

Z.G

C: $\{\operatorname{lemma}(\mathrm{Z})=$ FORMER, title(Y$)$, proper_name $(\mathrm{X})\}$
S: DF

Each rule maps from one text into another.

- Pairs of texts originate from the translated and expanded represent pairs of texts

RTE-3 corpus.
Formally a rule is a quintuple < Left-Hand Side,
RIght-Hand Side, Conditions of Applicability, Strength
Specification, Polarity signature >

- Many rules are Polish-specific.

Strength specification ("S") takes values
"S" for strong
"DF" for defeasible (e.g. conversational implicatures)
"WTF" for wishfull thinking fallacies.

Polarity signature is
represent pairs of texts:

- a text matching LHS and a text matching RHS
- as above but in negative polarity contexts
- a text matching RHS and a text matching LHS
- as above but in negative polarity contexts

Possible values for each element are:
" + " the pair is in entailment relation
"-" the pair is in entailment relation if the polarity of
the consequent is reversed
" 0 " neither of the above

I: In an Austrian hospital three nurses have been arrested on suspicion of killing patients
O: Three nurses from an Austrian hospital have been arrested on suspicion of killing patients.

X.L		X.L
nsubjpass	nmod	nsubjpass
Y.L	Z.L	Y.L
	case	$n \mathrm{mod}$
	U.G	Z.L
		case

C: $\{\operatorname{lemma}(\mathrm{U})=\mathrm{IN}, \operatorname{lemma}(\mathrm{V})=\mathrm{FROM}$,
workplace(Z,Y), employer(Z,Y)\}
S: DF
:

I: Dopiero śmierć uwolniła Swifta z apatii w 1745 r.
O: Swift zmarł w 1745 r.

${ }_{\text {nsubj }} /{ }_{\text {dobj }}$	U.L
Y.G	$\left.\right\|_{\text {nsubj }}$
Z.L	Z.L

C: $\{\operatorname{lemma}(X)=$ UWOLNIĆ,
lemma $(\mathrm{Y})=$ ŚMIERĆ
lemma(U)=ZEMRZEĆ,
tense $(\mathrm{X})=$ tense $(\mathrm{U})\}$
S: S
P: +/o/o/+

LHS and RHS are syntactic dependency trees to be matched with dependency (sub)trees of the input text and the outpu text. Apart of syntactic dependencies, matching involves

- Morphosyntactic information given in the tree nodes.
" Lexical identity encoded as "lemma $(\mathrm{X})=$ =.." or "lemma $(X) \in\{\ldots\}$ ".
- Other semantic applicability constraints defined in the third element of the rule.

I: During Civil War the governments of the United States and the Confederacy began purchasing arms in Britain.
O: During Civil War the government of United States and the government of Confederacy began purchasing arms in Britain.

